Metamaterials: Shrinking Circuit Elements and Nano-optics (October 25, 2006)

نویسنده

  • Nader Engheta
چکیده

Metamaterials are engineered composite media with unconventional electromagnetic and optical properties. They can be formed by embedding sub-wavelength inclusions as "artificial molecules" in host media in order to exhibit specific desired response functions that are not readily available in nature, but physically realizable. These metamaterials have exciting characteristics in manipulating and processing RF, microwave, IR and optical signal information. In my group, we have been investigating various features of these media and have been developing some of the fundamental concepts and theories and modeling of wave interaction with a variety of structures and systems involving these material media. From our analyses and simulations, we have found that the devices and components formed by these media may be ultracompact and subwavelength, while supporting resonant and propagating modes. This implies that in such structures RF, microwave, IR and optical signals can be controlled and reshaped beyond the diffraction limits, leading to the possibility of miniaturization of optical interconnects and design and control of near-field devices and processors for the next generation of information technology. This may also lead to nano-architectures capable of signal processing in the near-field optics, which has the potential for significant size reduction in information processing and storage. Furthermore, the nanostructures made by pairing these media can be compact resonant components, resulting in either enhanced wave signatures and higher directivity or in transparency and scattering reduction. We are also interested in nano-optics of metamaterial structures that effectively act as "lumped nano-circuit-elements". These may provide nano-inductors, nano-capacitors, nano-resistors, and nanodiodes as part of "field nanocircuits" in the optical regimes or optical-field nanoelectronics--, and can provide roadmaps to more complex nanocircuits and systems formed by collection of such nanostructures. All these characteristics may offer various potential applications in high-resolution near-field imaging and microscopy, enhancement or reduction of wave interaction with nanoparticles and nano-apertures, nanoantennas and arrays, far-field sub-diffraction optical microscopy (FSOM), nano-circuit-filters, optical data storage, nano-beam patterning and spectroscopy, optical-molecular signaling and optical coupling and interfacing with cells, to name a few Notes: Wednesday talk

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Nanotransmission Lines: Synthesis of Planar Left-Handed Metamaterials in the Infrared and Visible Regimes

Following our recent theoretical development of the concept of nano-inductors, nano-capacitors and nanoresistors at optical frequencies and the possibility of synthesizing more complex nanoscale circuits, here we theoretically investigate in detail the problem of optical nano-transmission lines (NTL) that can be envisioned by properly joining together arrays of these basic nano-scale circuit el...

متن کامل

Negative effective permeability and left-handed materials at optical frequencies.

We present here the design of nano-inclusions made of properly arranged collections of plasmonic metallic nano-particles that may exhibit a resonant magnetic dipole collective response in the visible domain. When such inclusions are embedded in a host medium, they may provide metamaterials with negative effective permeability at optical frequencies. We also show how the same inclusions may prov...

متن کامل

Towards three-dimensional optical metamaterials

Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication t...

متن کامل

Optical 'shorting wires'.

Connecting lumped circuit elements in a conventional circuit is usually accomplished by conducting wires that act as conduits for the conduction currents with negligible potential drops. More challenging, however, is to extend these concepts to optical nanocircuit elements. Here, following our recent development of optical lumped circuit elements, we show how a special class of nanowaveguides f...

متن کامل

Focusing of Light by a Nano-Hole Array

We demonstrate a conceptually new mechanism for sub-wavelength focusing at optical frequencies based upon the use of nano-hole quasi-periodic arrays in metal screens. Using coherent illumination at 660 nm and scanning near-field optical microscopy, ~290 nm “hot spots”, were observed at a distance of ~12.5 μm from the array. Even smaller hot-spots of about 200 nm in waist were observed closer to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016